• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
QuestionPro

QuestionPro

questionpro logo
  • Products
    survey software iconSurvey softwareEasy to use and accessible for everyone. Design, send and analyze online surveys.research edition iconResearch SuiteA suite of enterprise-grade research tools for market research professionals.CX iconCustomer ExperienceExperiences change the world. Deliver the best with our CX management software.WF iconEmployee ExperienceCreate the best employee experience and act on real-time data from end to end.
  • Solutions
    IndustriesGamingAutomotiveSports and eventsEducationGovernment
    Travel & HospitalityFinancial ServicesHealthcareCannabisTechnology
    Use CaseAskWhyCommunitiesAudienceContactless surveysMobile
    LivePollsMember ExperienceGDPRPositive People Science360 Feedback Surveys
  • Resources
    BlogeBooksSurvey TemplatesCase StudiesTrainingHelp center
  • Features
  • Pricing
Language
  • English
  • Español (Spanish)
  • Português (Portuguese (Brazil))
  • Nederlands (Dutch)
  • العربية (Arabic)
  • Français (French)
  • Italiano (Italian)
  • 日本語 (Japanese)
  • Türkçe (Turkish)
  • Svenska (Swedish)
  • Hebrew IL (Hebrew)
  • ไทย (Thai)
  • Deutsch (German)
  • Portuguese de Portugal (Portuguese (Portugal))
Call Us
+1 800 531 0228 +1 (647) 956-1242 +52 999 402 4079 +49 301 663 5782 +44 20 3650 3166 +81-3-6869-1954 +61 2 8074 5080 +971 529 852 540
Log In Log In
SIGN UP FREE

Home Market Research

Statistical analysis: What It Is, Types, Uses & How to Do It

statistical analysis

Statistical analysis offers us a valuable set of interpretations for understanding the results of an investigation. It equips us to identify trends within different data points, develop statistical models, and design surveys and research studies. This capacity becomes particularly crucial when dealing with large volumes of data, as it enables us to analyze data values and collect relevant insights for shaping future trends, ultimately making sense of big data by applying various statistical tools.

We know data analysis involves an in-depth review of each part of a whole to understand its structure and interpret its operation. Data analytics and data analysis are closely related processes that involve extracting insights from data to make informed decisions. Statistics, on the other hand, is the science that uses probabilities as a basis to influence the possible outcomes of situations that are determined by numerical data when collecting, interpreting and determining their validity.

Content Index hide
1 What is Statistical Analysis?
2 Types of Statistical Analysis
3 How to perform a functional statistical analysis
4 Advantages of Statistical Analysis
5 Uses of Statistics in Data Analysis
6 Uses of Statistical Analysis with Examples
7 Conclusion

What is Statistical Analysis?

Statistical analysis collects, cleans, summarizes, interprets, and draws conclusions from data. It involves using statistical techniques and methods to analyze and make sense of information, helping researchers, analysts, and decision-makers understand patterns, relationships, and trends within data sets. Statistical analysis is fundamental to scientific research, market intelligence, quality control, and decision-making in various fields.

Hence, you engage in statistical analysis when you gather and interpret data with the purpose of uncovering patterns and trends. This signifies that, while it constitutes a form of data analysis on its own, it is undertaken with an interpretive perspective, which proves invaluable in making informed decisions and comprehending a company’s potential customers, their behaviors, and their experiences.

“Today, statistics is a tool that cannot be lacking in the analysis of data from an investigation, because from the conception of the idea of ​​what is going to be investigated, through the definition of objectives, hypotheses, variables, collection of the data, organization, review, classification, tabulation and production of the results for their analysis it is important to know how to give an appropriate use to the different measures and statistical models for the analysis.

When it is accomplished, the results obtained represent a true contribution to solving the problems inherent to the field where the activities inherent to the different investigations are carried out. ” —Profr. Gerardo Bauce

With a statistical analysis, we can answer questions such as the following:

  • Who are our clients?
  • How much does a client pay in a visit?
  • What is the age of our clients?
  • How can we categorize our types of clients?
  • What types of experiences do our clients enjoy?

Identifying patterns of behavior or different trends in a set of data helps companies observe and record the buying behavior of their customers, both to improve their products or services and to facilitate an updated and improved shopping experience, obtaining satisfied customers and great brand awareness as a result.

LEARN ABOUT: Data Analytics Projects

Types of Statistical Analysis

Statistical analysis is indispensable to data analysis, research, and informed decision-making. It encompasses a wide array of techniques, each tailored to specific purposes, making it a versatile tool in data analytics. Here are some of the most common types of statistical analysis:

Descriptive Analysis:

Descriptive statistics help in the presentation of data, making it more understandable through charts and tables, particularly valuable for market analysis or when working with categorical data.

Inferential Analysis:

Inferential statistics delve into relationships between variables, often involving hypothesis tests and drawing conclusions from sample data to generalize to a larger population.

Predictive Analysis:

Predictive statistical analysis harnesses the power of machine learning, data mining, and data modeling to discern patterns, thereby facilitating the anticipation of future events by drawing insights from historical data. This practice is fundamental not only in data analysis but also in guiding pivotal business decisions.

Prescriptive Analysis:

This statistical analysis provides recommendations and informed decisions based on the data. It’s invaluable for guiding strategic actions.

Exploratory Data Analysis:

This method explores unknown data associations and uncovers potential relationships, similar to inferential analysis, but emphasizes data landscape exploration.

Causal Analysis:

Causal statistical analysis unravels cause-and-effect relationships within raw data, delving into what specific events occur and their impacts on other variables. It is vital for understanding the market dynamics or conducting hypothesis tests.

The choice of statistical analysis method hinges on research questions, data type, and underlying assumptions. Researchers, statisticians, and data analysts meticulously select the appropriate method according to their objectives and the nature of the data they collect and analyze. Statistical software and data sets form the core of their toolbox, facilitating effective data collection, analysis, and informed decision-making.

How to perform a functional statistical analysis

In order to perform statistical analysis, we need to collect and review the data samples available in the results of the study to be analyzed.

Although there is no single way to carry out an interpretive analysis, there are practices that can be replicated in any study if they are carried out in the appropriate way to the information provided. These tips will allow us to carry out a useful analysis.

statistical analysis how to
  • Give a clear and realistic description of the data we have.
  • Analyze how the data is related to the study subjects.
  • Design a model that considers and describes the relationship between the data and the study subjects.
  • Evaluate the model to determine its validity.
  • Consider scenarios and tests using predictive analytics.

Advantages of Statistical Analysis

Statistical analysis, a cornerstone of data science, offers several advantages in various fields, including research, business, and decision-making. By effectively analyzing data, statistical analytics supports critical advantages:

Data Interpretation: Statistical analysis plays a pivotal role in data science, helping researchers and analysts summarize and interpret complex data, making it more accessible and enabling them to draw meaningful insights. This capability is especially crucial when dealing with vast data sets.

Objectivity: In data science, statistical analytics provides an objective and systematic approach to decision-making and hypothesis testing, reducing the influence of bias in interpreting collected data. This impartiality enhances the reliability of findings.

Generalization: One of the primary strengths of statistical analysis is its ability to generalize research findings from a sample to the entire data population, thereby enhancing the external validity of research studies.

Data Reduction: When dealing with extensive data sets, statistical analysis assists in data reduction, extracting key patterns and relationships. Simplifying these large data sets makes it easier to work with, facilitating more effective communication of results.

Comparisons: Statistical analysis, including calculating measures like standard deviation, makes comparing different groups or conditions within the collected data easier. It aids in identifying significant differences or similarities, a crucial step in decision-making and research.

Prediction: Statistical analysis goes beyond merely analyzing data; it enables the development of predictive models. These models are invaluable for forecasting trends, making predictions, and aiding in informed decision-making.

Statistical analysis is the backbone for gathering and analyzing data sets in data science. This robust framework is critical for extracting meaningful insights from collected data, thus enhancing decision-making and propelling progress in numerous fields

Uses of Statistics in Data Analysis

When we comprehensively understand the trends within our market, we gain a competitive advantage. We can employ statistical analysis to anticipate future behaviors by implementing suitable risk management strategies. Furthermore, by leveraging specific data on consumer behavior, we can discern their preferences, pinpoint the products or services that resonate most and least with them, and strategize on how to effectively engage them in making a purchase.

In a landscape where new trends and behaviors among clients and even employees constantly emerge, reviewing and analyzing complex data is imperative. For this purpose, we recommend using survey software like QuestionPro, which offers specialized tools and functions for designing a robust statistical analysis. This approach ensures that the data collected, the determination of sample sizes, and the selection of sample groups are aligned with the analysis’s objectives and represent the entire population. Engaging skilled statistical analysts in this process further enhances the effectiveness of the data collection and testing of statistical hypotheses.

There’s always new trends and behaviors among clients or even employees that we need to constantly review, for this reason, to carry out more complex data with specific tools and functions to design a statistical analysis, we recommend using survey software such as QuestionPro.

Uses of Statistical Analysis with Examples

Statistical analysis is widely adopted across various fields, serving numerous critical purposes. Here are some typical applications of this analysis, along with examples:

Business and Economics:

  • Market Research: Businesses can analyze preferences and trends by collecting data from a representative sample of customers. For instance, a company might conduct surveys to determine which product features are most appealing to customers.
  • Financial Analysis: In the financial sector, statistical analysis is instrumental in understanding stock market trends and forecasting future stock prices. Using historical data makes it possible to create models for predicting alterations in stock prices.

Healthcare:

  • Clinical Trials: In the healthcare sector, statistical analysis is employed in clinical trials to assess the efficacy of new medications. Researchers compare patient outcomes in a control group with those in a treatment group to determine the drug’s impact.
  • Epidemiology: Statistical analysis helps epidemiologists analyze disease patterns in populations. For example, data is examined during a disease outbreak like COVID-19 to understand how the disease spreads across different regions.

Manufacturing and Quality Control:

  • Quality Assurance: Statistical process control (SPC) is applied in manufacturing to oversee and enhance production processes. It ensures consistent, high-quality product output. Statistical analysis allows real-time monitoring of critical parameters to detect variations and take corrective action.
  • Defect Analysis: In quality control, the analysis of product defects involves collecting data through random sampling. For instance, a sample of widgets may be inspected to determine if they meet quality standards. This analysis aids in identifying and addressing defects effectively.

These examples highlight how data sets are collected through methods such as random sampling, allowing for the determination of sample sizes and the selection of representative sample groups. Statistical analysts play a crucial role in applying appropriate statistical techniques and methods to address specific research questions in these fields. This analysis is a versatile tool that enhances decision-making, problem-solving, and insights generation across diverse domains.

Conclusion

Statistical analysis, facilitated by advanced statistical analysis software, is a fundamental and versatile tool pivotal across many disciplines and industries. It empowers researchers, analysts, and decision-makers to extract valuable insights, make informed choices, and draw meaningful conclusions from data. Whether leveraging sophisticated statistical methods to reveal intricate patterns, employing statistical software to make accurate predictions, or conducting statistical tests to identify causal relationships, this analysis is an indispensable cornerstone for data-driven decision-making. It serves as the conduit between raw data and actionable knowledge, enabling evidence-based decision-making in areas as diverse as healthcare and economics, environmental science, and manufacturing.

Moreover, statistical analysis is pivotal in enhancing our understanding of the world and helps us mitigate risks, optimize processes, and tackle complex problems. Employing a wide array of statistical tests and techniques bridges the gap between the abundance of raw data and the practical insights needed for effective decision-making. Whether it’s assessing the impact of interventions on a dependent variable in healthcare research or optimizing manufacturing processes for improved product quality, statistical analysis is a linchpin in our ability to decipher the complex tapestry of data surrounding us and turn it into actionable information.

       

SHARE THIS ARTICLE:

About the author
Fabyio Villegas
Copywriter and SEO Specialist. With over 11 years of experience in Digital Marketing and Educational Content Curation.
View all posts by Fabyio Villegas

Primary Sidebar

Research what's on your mind. Find out what's on theirs!

A suite of tools to leverage research and transform insights.

Discover our insight platform

RELATED ARTICLES

HubSpot - QuestionPro Integration

Data Management Strategy: What it is & How to Build It

Aug 26,2022

HubSpot - QuestionPro Integration

What are the Quota Sampling Advantages And Disadvantages?

Mar 25,2025

HubSpot - QuestionPro Integration

QuestionPro expands into agile qualitative research with the acquisition of Digsite

Sep 01,2022

BROWSE BY CATEGORY

  • Academic
  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Audience
  • Brand Awareness
  • Business
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • CX
  • Employee Benefits
  • Employee Engagement
  • Employee Engagement
  • Employee Retention
  • Enterprise
  • Events
  • Forms
  • Friday Five
  • General Data Protection Regulation
  • Guest Post
  • Insights Hub
  • Life@QuestionPro
  • LivePolls
  • Market Research
  • Marketing
  • Mobile
  • Mobile App
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • non-profit
  • NPS
  • Online Communities
  • Polls
  • Question Types
  • Questionnaire
  • QuestionPro
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Startups
  • Survey Templates
  • Surveys
  • Tech News
  • Tips
  • Training
  • Training Tips
  • Trending
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • VOC
  • Webinar
  • Webinars
  • What’s Coming Up
  • Workforce
  • Workforce Intelligence

Footer

MORE LIKE THIS

wells-fargo-nps-2025

Wells Fargo NPS 2025: What Businesses Can Learn

May 19, 2025

word-cloud

Word Cloud: What it is & How to Use QuestionPro Word Cloud?

May 16, 2025

synthetic data and ai - market research

Redefining Research Strategy with AI and Synthetic Data

May 15, 2025

Kohl's-NPS-2025

Kohl’s NPS & Satisfaction in 2025

May 15, 2025

Other categories

  • Academic
  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Audience
  • Brand Awareness
  • Business
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • CX
  • Employee Benefits
  • Employee Engagement
  • Employee Engagement
  • Employee Retention
  • Enterprise
  • Events
  • Forms
  • Friday Five
  • General Data Protection Regulation
  • Guest Post
  • Insights Hub
  • Life@QuestionPro
  • LivePolls
  • Market Research
  • Marketing
  • Mobile
  • Mobile App
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • non-profit
  • NPS
  • Online Communities
  • Polls
  • Question Types
  • Questionnaire
  • QuestionPro
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Startups
  • Survey Templates
  • Surveys
  • Tech News
  • Tips
  • Training
  • Training Tips
  • Trending
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • VOC
  • Webinar
  • Webinars
  • What’s Coming Up
  • Workforce
  • Workforce Intelligence

questionpro-logo-nw
Help center Live Chat SIGN UP FREE
  • Sample questions
  • Sample reports
  • Survey logic
  • Branding
  • Integrations
  • Professional services
  • Security
  • Survey Software
  • Customer Experience
  • Workforce
  • Communities
  • Audience
  • Polls Explore the QuestionPro Poll Software - The World's leading Online Poll Maker & Creator. Create online polls, distribute them using email and multiple other options and start analyzing poll results.
  • Research Edition
  • LivePolls
  • InsightsHub
  • Blog
  • Articles
  • eBooks
  • Survey Templates
  • Case Studies
  • Training
  • Webinars
  • All Plans
  • Nonprofit
  • Academic
  • Qualtrics Alternative Explore the list of features that QuestionPro has compared to Qualtrics and learn how you can get more, for less.
  • SurveyMonkey Alternative
  • VisionCritical Alternative
  • Medallia Alternative
  • Likert Scale Complete Likert Scale Questions, Examples and Surveys for 5, 7 and 9 point scales. Learn everything about Likert Scale with corresponding example for each question and survey demonstrations.
  • Conjoint Analysis
  • Net Promoter Score (NPS) Learn everything about Net Promoter Score (NPS) and the Net Promoter Question. Get a clear view on the universal Net Promoter Score Formula, how to undertake Net Promoter Score Calculation followed by a simple Net Promoter Score Example.
  • Offline Surveys
  • Customer Satisfaction Surveys
  • Employee Survey Software Employee survey software & tool to create, send and analyze employee surveys. Get real-time analysis for employee satisfaction, engagement, work culture and map your employee experience from onboarding to exit!
  • Market Research Survey Software Real-time, automated and advanced market research survey software & tool to create surveys, collect data and analyze results for actionable market insights.
  • GDPR & EU Compliance
  • Employee Experience
  • Customer Journey
  • Synthetic Data
  • About us
  • Executive Team
  • In the news
  • Testimonials
  • Advisory Board
  • Careers
  • Brand
  • Media Kit
  • Contact Us

QuestionPro in your language

  • English
  • Español (Spanish)
  • Português (Portuguese (Brazil))
  • Nederlands (Dutch)
  • العربية (Arabic)
  • Français (French)
  • Italiano (Italian)
  • 日本語 (Japanese)
  • Türkçe (Turkish)
  • Svenska (Swedish)
  • Hebrew IL (Hebrew)
  • ไทย (Thai)
  • Deutsch (German)
  • Portuguese de Portugal (Portuguese (Portugal))

Awards & certificates

  • survey-leader-asia-leader-2023
  • survey-leader-asiapacific-leader-2023
  • survey-leader-enterprise-leader-2023
  • survey-leader-europe-leader-2023
  • survey-leader-latinamerica-leader-2023
  • survey-leader-leader-2023
  • survey-leader-middleeast-leader-2023
  • survey-leader-mid-market-leader-2023
  • survey-leader-small-business-leader-2023
  • survey-leader-unitedkingdom-leader-2023
  • survey-momentumleader-leader-2023
  • bbb-acredited
The Experience Journal

Find innovative ideas about Experience Management from the experts

  • © 2022 QuestionPro Survey Software | +1 (800) 531 0228
  • Sitemap
  • Privacy Statement
  • Terms of Use