• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
QuestionPro

QuestionPro

questionpro logo
  • Products
    survey software iconSurvey softwareEasy to use and accessible for everyone. Design, send and analyze online surveys.research edition iconResearch SuiteA suite of enterprise-grade research tools for market research professionals.CX iconCustomer ExperienceExperiences change the world. Deliver the best with our CX management software.WF iconEmployee ExperienceCreate the best employee experience and act on real-time data from end to end.
  • Solutions
    IndustriesGamingAutomotiveSports and eventsEducationGovernment
    Travel & HospitalityFinancial ServicesHealthcareCannabisTechnology
    Use CaseAskWhyCommunitiesAudienceContactless surveysMobile
    LivePollsMember ExperienceGDPRPositive People Science360 Feedback Surveys
  • Resources
    BlogeBooksSurvey TemplatesCase StudiesTrainingHelp center
  • Features
  • Pricing
Language
  • English
  • Español (Spanish)
  • Português (Portuguese (Brazil))
  • Nederlands (Dutch)
  • العربية (Arabic)
  • Français (French)
  • Italiano (Italian)
  • 日本語 (Japanese)
  • Türkçe (Turkish)
  • Svenska (Swedish)
  • Hebrew IL (Hebrew)
  • ไทย (Thai)
  • Deutsch (German)
  • Portuguese de Portugal (Portuguese (Portugal))
Call Us
+1 800 531 0228 +1 (647) 956-1242 +52 999 402 4079 +49 301 663 5782 +44 20 3650 3166 +81-3-6869-1954 +61 2 8074 5080 +971 529 852 540
Log In Log In
SIGN UP FREE

Home CX Consumer Insights

ANOVA testing: What is it, types, benefits & examples

anova-testing

Surveys are effective at collecting data. However, insights develop after the fact and arise from the analysis we subject the data to. One of those techniques currently on my favored list is the tried and true analysis of variance (ANOVA) or ANOVA testing.

In the field of statistics, the Analysis of Variance (ANOVA) is a powerful and widely used technique for comparing means across multiple groups. ANOVA test provides researchers and data analysts with valuable insights into the variations between different groups and the effects of various factors. 

Analysis of Variance (ANOVA) is a powerful statistical technique used to compare the means of two or more groups. It is widely employed in various fields, including psychology, biology, economics, and engineering, to name a few.

ANOVA helps researchers understand whether there are statistically significant differences among the group means and if those differences are due to random chance or actual effects. 

This blog will explore what ANOVA testing is, its types and benefits, and provide some practical examples.

Content Index hide
1 What is ANOVA?
2 Types of ANOVA testing
3 Benefits of ANOVA testing
4 Example of How to Use ANOVA
5 Conclusion

What is ANOVA?

Analysis of Variance (ANOVA) is a statistical method used to compare means between two or more groups to determine if they have statistically significant differences. It assesses whether the variations between the group means are greater than the variations within each group.

ANOVA is particularly useful when dealing with categorical data or when comparing the effects of different treatments or interventions on a continuous outcome variable.

The basic idea behind ANOVA is to decompose the total variance in the data into two components: variance between groups and variance within groups.

If the variance between groups is significantly larger than the variance within groups, it suggests that there are genuine differences between the groups being compared.

Types of ANOVA testing

There are different types of ANOVA based on the design of the study:

1. One-Way ANOVA

This term is used when one independent variable (factor) contains three or more levels or groups. For example, comparing the mean test scores of students from different schools (groups) based on a single factor like teaching method (e.g., traditional, online, hybrid).

2. Two-Way ANOVA

Involves two independent variables (factors) and is used when two main effects and interactions exist between them. For instance, comparing students’ performance based on teaching method and gender.

3. Factorial ANOVA

An extension of the two-way ANOVA that includes multiple factors with different levels, allowing for more complex designs and interactions.

4. Repeated Measures ANOVA

Employed when the same group of subjects is measured multiple times, such as before and after an intervention, to evaluate changes within the same subjects over time or conditions.

Benefits of ANOVA testing

ANOVA testing offers several significant benefits in statistical analysis and data-driven decision-making. Let’s explore some of the key advantages of using Analysis of Variance:

  • Comparison of Multiple Groups

One of the primary benefits of the ANOVA test is its ability to compare means across three or more groups simultaneously. 

Instead of conducting multiple t-tests for each pair of groups, ANOVA allows researchers to analyze the variations between all groups in one comprehensive test. This saves time and reduces the chances of making type I errors (false positives) that can occur when conducting multiple tests.

  • Identifying Significant Differences

ANOVA helps identify whether there is a statistically significant difference between the means of the groups being compared. 

By calculating the F-statistic and corresponding p-value, researchers can determine whether the observed differences between the group means are due to genuine effects or random chance. If the p-value is below a predetermined significance level (usually 0.05), researchers can confidently conclude that the groups have various differences.

  • Understanding the Impact of Factors

In experimental designs or observational studies with multiple independent variables, ANOVA enables researchers to understand the impact of each factor on the dependent variable. 

By partitioning the variance into different components, researchers can quantify the contributions of individual factors and their interactions on the overall variability of the dependent variable. This helps in better understanding the underlying relationships and aids in making informed decisions based on the results.

  • Flexibility and Adaptability

ANOVA comes in various forms, such as one-way ANOVA, two-way ANOVA, and factorial ANOVA. This flexibility allows researchers to choose the appropriate model based on the complexity of their data and research question. 

Additionally, ANOVA can be extended to handle different data types and distributional assumptions, making it applicable to a wide range of research fields.

  • Assumptions and Remedies

While the ANOVA test has numerous benefits, it is essential to be aware of its assumptions. The main assumptions include normality of the residuals, homoscedasticity (equal variance) of the residuals, and independence of observations. 

However, if these assumptions are not met, certain remedies and alternative hypothesis approaches like non-parametric ANOVA or transformation of data can be applied to make the analysis robust.

  • Interpretation and Post-hoc Analysis

Following the ANOVA test, if the null hypothesis is rejected, researchers can employ post hoc tests to identify which specific group means differ significantly from one another. 

Commonly used post-hoc tests include Tukey’s Honestly Significant Difference (HSD), Bonferroni, or Scheffe tests. These additional analyses provide deeper insights and help establish more accurate comparisons between individual groups.

Example of How to Use ANOVA

The researchers analyze the performance of students at various colleges. An R&D researcher can try two different product production techniques to assess whether a procedure saves money. ANOVA tests are a synthesis of several elements. 

If the data is experimental, the system is applicable. Analytical variance is utilized when a person cannot access software that allows for manual calculating of variances. Simple to use and excellent for tiny sample amounts.

If we are collecting metric data with our surveys, perhaps in the form of responses to a Likert scale, the amount spent on a product, customer satisfaction scores, or the number of purchases made, then we open the door for analyzing differences in average scores between respondent groups. 

Suppose we are comparing two groups at a time (e.g., men vs. women, new vs. existing customers, employees vs. managers, etc.). In that case, it is appropriate to use a t-test to assess the significance of any differences. However, if there are more than two groups, it becomes necessary to look to another technique.

ANOVA, or its non-parametric counterparts, allow you to determine if differences in mean values between three or more groups are by chance or if they are indeed significantly different. ANOVA is particularly useful when analyzing the multi-item scales common in market research. 

In the table below, respondents in a restaurant survey rated three diners on overall satisfaction. The null hypothesis is there is no difference in satisfaction between the three restaurants. However, the data seems to imply otherwise.

Larry’s Diner 6.28
Curly’s Diner 6.05
Moe’s Diner   5.33
Overall            5.65

ANOVA makes use of the F-test to determine if the variance in response to the satisfaction questions is large enough to be considered statistically significant.

In this example, the F-test for satisfaction is 51.19, which is considered statistically significant, indicating a real difference between average satisfaction scores. ANOVA indicates whether or not there is a significant difference. It does not provide, however, direction as to which group is higher or lower. 

Statistical test packages, such as SPSS and SAS, allow the survey researcher the option of selecting a post hoc test that compares groups for individual differences. 

In regard to satisfaction, Larry’s Diner was the clear winner, with an average score significantly greater than either Curly’s or Moe’s. The difference between Curly’s and Moe’s was not large enough, given the number of respondents, to be significant.

The proper use of ANOVA in analyzing survey data requires that a few assumptions be met, including normal distribution of data, independence of cases, and equality of variance (each group’s variance is equal). If these assumptions cannot be met, non-parametric tests that do not require these assumptions are available.

Data by itself is just that. However, when we judiciously employ statistical tests, we can create insight that can positively impact our marketing efforts.

Conclusion

ANOVA testing is an indispensable statistical tool for researchers and data analysts seeking to compare multiple groups efficiently and effectively. Its ability to identify the significant difference, understand the impact of various factors, and provide flexibility in analyzing diverse datasets makes it a preferred choice in a wide range of fields, including medical research, social sciences, marketing, and manufacturing, among others. 

However, it is crucial to recognize the assumptions associated with ANOVA and take appropriate measures to ensure the validity of the results. By harnessing the power of ANOVA, researchers can make well-informed decisions and contribute to advancing knowledge in their respective domains.

SHARE THIS ARTICLE:

About the author
Greg Timpany
Consumer and B2B Insights and Research Thought Leader. Passionate About Translating Insights into Action.
View all posts by Greg Timpany

Primary Sidebar

Research what's on your mind. Find out what's on theirs!

A suite of tools to leverage research and transform insights.

Discover our insight platform

RELATED ARTICLES

HubSpot - QuestionPro Integration

7 Steps to Build A Data Strategy + Examples

Jan 02,2023

HubSpot - QuestionPro Integration

What Your Help Wanted Sign Says About Your CX — Tuesday CX Thoughts

May 16,2023

HubSpot - QuestionPro Integration

Exit Interviews: Transforming Departures into Growth Opportunities

Jul 04,2024

BROWSE BY CATEGORY

  • Academic
  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Audience
  • Brand Awareness
  • Business
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • CX
  • Employee Benefits
  • Employee Engagement
  • Employee Engagement
  • Employee Retention
  • Enterprise
  • Events
  • Forms
  • Friday Five
  • General Data Protection Regulation
  • Guest Post
  • Insights Hub
  • Life@QuestionPro
  • LivePolls
  • Market Research
  • Marketing
  • Mobile
  • Mobile App
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • non-profit
  • NPS
  • Online Communities
  • Polls
  • Question Types
  • Questionnaire
  • QuestionPro
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Startups
  • Survey Templates
  • Surveys
  • Tech News
  • Tips
  • Training
  • Training Tips
  • Trending
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • VOC
  • Webinar
  • Webinars
  • What’s Coming Up
  • Workforce
  • Workforce Intelligence

Footer

MORE LIKE THIS

Medtech Market Research

MedTech Market Research: Fueling Innovation in 2025

May 8, 2025

customer-retention-strategies

15 Top Customer Retention Strategies to Boost Loyalty in 2025

May 8, 2025

the-home-depot-nps-2025

The Home Depot NPS & Customer Satisfaction 2025

May 7, 2025

panel-research-companies

Top 8 Panel Research Companies for Quality Research in 2025

May 6, 2025

Other categories

  • Academic
  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Audience
  • Brand Awareness
  • Business
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • CX
  • Employee Benefits
  • Employee Engagement
  • Employee Engagement
  • Employee Retention
  • Enterprise
  • Events
  • Forms
  • Friday Five
  • General Data Protection Regulation
  • Guest Post
  • Insights Hub
  • Life@QuestionPro
  • LivePolls
  • Market Research
  • Marketing
  • Mobile
  • Mobile App
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • non-profit
  • NPS
  • Online Communities
  • Polls
  • Question Types
  • Questionnaire
  • QuestionPro
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Startups
  • Survey Templates
  • Surveys
  • Tech News
  • Tips
  • Training
  • Training Tips
  • Trending
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • VOC
  • Webinar
  • Webinars
  • What’s Coming Up
  • Workforce
  • Workforce Intelligence

questionpro-logo-nw
Help center Live Chat SIGN UP FREE
  • Sample questions
  • Sample reports
  • Survey logic
  • Branding
  • Integrations
  • Professional services
  • Security
  • Survey Software
  • Customer Experience
  • Workforce
  • Communities
  • Audience
  • Polls Explore the QuestionPro Poll Software - The World's leading Online Poll Maker & Creator. Create online polls, distribute them using email and multiple other options and start analyzing poll results.
  • Research Edition
  • LivePolls
  • InsightsHub
  • Blog
  • Articles
  • eBooks
  • Survey Templates
  • Case Studies
  • Training
  • Webinars
  • All Plans
  • Nonprofit
  • Academic
  • Qualtrics Alternative Explore the list of features that QuestionPro has compared to Qualtrics and learn how you can get more, for less.
  • SurveyMonkey Alternative
  • VisionCritical Alternative
  • Medallia Alternative
  • Likert Scale Complete Likert Scale Questions, Examples and Surveys for 5, 7 and 9 point scales. Learn everything about Likert Scale with corresponding example for each question and survey demonstrations.
  • Conjoint Analysis
  • Net Promoter Score (NPS) Learn everything about Net Promoter Score (NPS) and the Net Promoter Question. Get a clear view on the universal Net Promoter Score Formula, how to undertake Net Promoter Score Calculation followed by a simple Net Promoter Score Example.
  • Offline Surveys
  • Customer Satisfaction Surveys
  • Employee Survey Software Employee survey software & tool to create, send and analyze employee surveys. Get real-time analysis for employee satisfaction, engagement, work culture and map your employee experience from onboarding to exit!
  • Market Research Survey Software Real-time, automated and advanced market research survey software & tool to create surveys, collect data and analyze results for actionable market insights.
  • GDPR & EU Compliance
  • Employee Experience
  • Customer Journey
  • Synthetic Data
  • About us
  • Executive Team
  • In the news
  • Testimonials
  • Advisory Board
  • Careers
  • Brand
  • Media Kit
  • Contact Us

QuestionPro in your language

  • English
  • Español (Spanish)
  • Português (Portuguese (Brazil))
  • Nederlands (Dutch)
  • العربية (Arabic)
  • Français (French)
  • Italiano (Italian)
  • 日本語 (Japanese)
  • Türkçe (Turkish)
  • Svenska (Swedish)
  • Hebrew IL (Hebrew)
  • ไทย (Thai)
  • Deutsch (German)
  • Portuguese de Portugal (Portuguese (Portugal))

Awards & certificates

  • survey-leader-asia-leader-2023
  • survey-leader-asiapacific-leader-2023
  • survey-leader-enterprise-leader-2023
  • survey-leader-europe-leader-2023
  • survey-leader-latinamerica-leader-2023
  • survey-leader-leader-2023
  • survey-leader-middleeast-leader-2023
  • survey-leader-mid-market-leader-2023
  • survey-leader-small-business-leader-2023
  • survey-leader-unitedkingdom-leader-2023
  • survey-momentumleader-leader-2023
  • bbb-acredited
The Experience Journal

Find innovative ideas about Experience Management from the experts

  • © 2022 QuestionPro Survey Software | +1 (800) 531 0228
  • Sitemap
  • Privacy Statement
  • Terms of Use